AN INTRODUCTION TO ETHICS FOR PROJECT MANAGERS

Ethics is not a subject that immediately grabs the mind when thinking of Project Management or Engineering decision making. This paper tries to demonstrate that not only is the subject of great relevance but that it has a bearing on almost all decisions made in the technical and managerial ranks of modern organisations.

This paper is written as a support for a module on Ethics intended for Project Management Masters students. The work situation that Project Managers find themselves in is very similar to that of the Engineering profession and much that has been written about ethics for Engineers is also applicable to other professionals working in a commercial organisation. The basis of much of the thought on ethics for professional people appears to have evolved from the medical field. However whereas medical professionals generally work in an individual capacity, many other professional disciplines are practiced within large multi-discipline organisations; a situation that brings its own ethical dimension.

This paper is divided into five parts; it begins with a brief introduction to where ethics come from and what they are. This is a very large field of study and the coverage here is necessarily very brief. The specific relevance of ethics in the work of Engineering and Project Management professionals is then discussed. The third section covers ethics and professional bodies whilst the forth addresses the modern corporate environment. Finally a number of cases are presented for class discussion.

1 What and Where do Ethics Originate..........................2

2 Project and Engineering Decision Making..................5

3 Professions - A Guide to Codes of Ethics7

4 Ethics and Modern Organisations...........................10

5 Ethics - Case Studies..12

6 Appendix..14
1 WHAT AND WHERE DO ETHICS ORIGINATE

“The behaviours classified as good or bad, right or wrong are not due to goodness or badness, or a good or bad character, or a knowledge of right and wrong: they are due to contingencies involving a great variety of reinforcers, including the generalised verbal reinforcers of 'Good!' 'Bad!' 'Right!' Wrong!'” ¹ These reinforcers are provided throughout the formative or growth years of most people, usually our parents and immediate family or social group. In this manner we build our value system. Ethics refers to moral values that are sound, actions that are morally required permissible, policies and laws that are desirable. ²

Values are something that we learn as we grow up and then we adapt or refine them as we mature. They are the basis for decisions we make and are of particular interest because they represent controls on the decisions we make. These two themes are explored in the sections below.

1.1 THE VALUE LEARNING PROCESS

Lawrence Kohlberg, an educational psychologist, has traced what he believes to be six sequential stages of ethical reasoning through which each person progresses as part of their normal mental development. ³ The child moves from an unquestioning dependence on external rules and controls to an increasingly sophisticated set of internalized standards, as follows:

1. Simple obedience to rules and authority to avoid punishment
2. Conformity to group behaviour to obtain rewards and exchange favours
3. Good-boy (or Good-girl) orientation, conformity to avoid dislike and rejection by others
4. Duty orientation, conformity to avoid censure by authority, disruption of order, and resulting guilt
5. Legalistic orientation, recognition of the values of contracts, some arbitrariness in rule formation to maintain common good
6. Conscience or principle orientation, primary allegiance to principles of choice, which can overrule law in cases where the law is judged to be more harm than good.

Wilson goes on to say that depending on intelligence and training, individuals can stop at any stage of this development path. Most people however reach stages four or five.

¹ Skinner p112 – 113.
² Martin & Shinzinger p8
³ Wilson p166
Developing to level four or five enables us to live harmoniously in small groups. (Wilson is referring here to our ancestral development into small hunter-gathering groups about 10,000 years ago).

Stage six represents behaviours associated with modern social living. The individual selects principles against which the group and law are judged. Precepts chosen by intuition based on emotion are primarily biological in origin and are likely to do no more than reinforce the primitive (hunter-gatherer group based) social arrangements.

1.2 VALUES AND CONTROL

“Once we have identified the contingencies that control the behaviour called good or bad, and right and wrong, the distinction between facts and how people feel about facts is clear”. The contingencies Skinner is talking about are events that reinforce or punish certain behaviours. He goes on to make the point that these contingencies may be due to good or bad luck rather than be administered by people; in addition they may not be appropriate. As Skinner says indolence may be rewarded and hard work through bad fortune, be punished!

Returning to control, Skinner gives an example of a person who drives a car well. They do this because of contingencies of reinforcement that have shaped this behaviour. These reinforcing contingencies drive us to a norm of behaviour, something acceptable by all those in our group and a set of rules supporting them. An example is ‘Thou shalt not steal’ one of the Ten Commandments in the Bible. In some cases the contingency is immediately related to the rule and reinforces it. In others it is not apparent and so we develop other rules and contingencies to drive the desired behaviour.

To explain rules to support desired behaviour consider the rule on a construction site requiring that all workers wear hard hats. The immediate contingency associated with not wearing a hard hat is injury when struck by a falling object. But because this is not a common event secondary reinforcement is needed. So a rule is made that failure to wear a hard hat will result in immediate disciplinary action and possible dismissal. Similar approaches are used to reinforce behaviours that ‘are for the good of others’ and not simply of self-interest.

Skinner goes on to explain that where a person does not develop a value system in the way most people do, it may result in significantly different behaviour. What Skinner says is that values are a form of social control on the individual. Where these are evaded the individual may ask “Why should I behave for the good of others” and express other such sentiments. Skinner points out that if a person overcomes the contingencies that induce behaviour ‘for the good of others’ the only remaining contingencies are personal reinforcers, and the individual turns to immediate gratification. This state is described as ‘valueless’ (As in lacking externally derived values) and symptoms may include use of drugs.

4 Skinner; the major part of this section is a précis from p113 - 125.

5 Skinner p55
When valueless situations are identified, controls are re-actively strengthened by sharpening the reinforcers. For instance laziness can be overcome by paying people more, crime reduced through stronger law enforcement. Skinner then points out that such action may succeed but does not address the root cause of the behaviour. The underlying problem is that organised control ‘for the good of others’ will continue to compete with personal reinforcers, and different kinds of organised control with one another.

1.3 DIFFERENT VALUE SYSTEMS

Having established that values come from the group around the individual, it is useful here to look at one description of different group values systems. It deals with the decision making process.

The problem is one of getting people over ‘there’ to do things the ‘way we do things around here’. Methods used to attempt this include the appointment of appropriate staff to command the ‘outpost’, another is to try to change values. Neither method has been particularly successful. Belbin identifies four distinct types of culture; Authoritarian, Kinship, Consensus and Bribe cultures. All, he says, are resistant to foreign influence.

Belbin goes on to say that the Organisation itself can override the values of its members. An organisation can destroy the ideals which created a following in the first place. Alternatively a well designed organisation can foster new working values that have a positive effect on behaviour.

In short each person holds a set of values derived from their family and personal life, the society they have grown up in, and the working environment around them. These value systems are not necessarily aligned with one another.

1.4 EVOLUTION OF VALUES IN ORGANISATIONS

Within organisations certain rules of behaviour evolve over time as the leaders of the organisation decide on solutions to certain problem types and these solutions work. Over a period of time these decisions become an underlying assumption behind subsequent decisions. As an example, in the engineering field, “it would be inconceivable to deliberately design something that is unsafe; it is a taken-for-granted assumption that things should be safe”.

These basic assumptions are very difficult to change. When something new arises that challenges these and people are forced to re-examine their basic assumptions they experience large amounts of anxiety. Instead of tolerating the anxiety levels people try to perceive the events around them as congruent with the assumptions to the extent of distorting their view of what is going on around them. In other words they may deny the validity of new data bearing on the particular issue or problem.

6 Belbin p72 -76

7 Schein; this section is taken from p28-37
A further result of the presence of these basic assumptions is that individuals who do not strongly subscribe to them within the group risk being ejected from the group.

1.5 CONCLUSIONS ON VALUES

The main points that have emerged are

1. Values are learned from the group we are part of, they may differ between different groups
2. Values are a form of control of individual behaviour
3. Group values reinforce actions taken for 'the good of others' and compete with values of immediate self interest

2 PROJECT AND ENGINEERING DECISION MAKING

Decisions made in a project and engineering or technical arena are commonly made inside an organisational setting. It is therefore important to understand the systematic impact the organisation has on the outcome of this process.

2.1 DECISIONS IN ORGANISATIONS

Herbert Simon tells us that decisions are a description of a future state of affairs that may be true or false, but essentially seek to be based on facts. However because decisions involve choices they unavoidably have an ethical component.

To illustrate this point consider a local authority decision to build a new recreational park. They have an aim in doing this that may be to improve public health or wellbeing, for instance. The factual part of the decision is that a new park will facilitate better health or wellbeing. The ethical dimension is in the word better, what and how does one decide if something is 'better'?

The factual part of the decision may not turn out to be true. In terms of decision making the 'fact' may be something that has to be proved and might eventually turn out to be untrue in the final analysis. However for the decision maker it remains the fact and the quantitative goal of the decision. The fact is that a park will probably result in healthier people. The decision maker has a goal of improving the physical health of the population and this is a reasonable way of achieving it.

The ethical dimension is the decision to devote city resources to building the park. To evaluate this aspect of the decision rationally, Simon tells us 'the values taken as organisational objectives must be definite, so that their degree of realisation in any situation can be assessed, and it must be possible to form judgments as to the probability that particular actions will implement these objectives'.

8 Simon p56
9 Simon p59 - 60
It is possible to validate the factual aspect of the decision by evaluating the degree to which it agrees with observed results (the facts themselves), the value dimension cannot be so evaluated, and its validity is a matter of human direction. In this example the fact is that a recreation facility may give rise to better wellbeing and health, the ethical aspect comes from the organisation goal stating that improving public health is something that ought to be done. The ethical aspect is thus sometimes not apparent in the actual decision making process because it is driving the decision at a systemic level.

This point is perhaps clarified through the example of the Space Shuttle Main Engine Development Project. The budget constraints placed on the Shuttle program caused a re-think on how the engineering development was to be undertaken. In particular, the testing of parts and sub assemblies in new technology development presented a cost challenge. There were two testing philosophies within the aerospace community at that time, 'all-up' was one and 'component' was the second.

All-up testing is a top down method that requires an entire system to be built and then tested as a whole. This is an 'all or nothing' approach to testing. Either the entire design works or it fails. Its advantage is that it is possible to produce a finished system in relatively short time frames compared to alternative ways of doing things.

All-up testing was a low cost approach that had evolved within the Department of Defence (DoD) establishment. The systems engineers in the DoD were accustomed to building large scale complex technical systems under conditions where there was a trade off between cost and reliability. The kinds of systems they built were unmanned missiles and early warning radar systems. Test flights were conducted on firing ranges and if the device failed and was lost no human lives were endangered.

The component testing approach is bottom up, each part and the material it is made of is specified and tested, then the sub assemblies are tested and re-designed if need be. Parallel development of alternative designs takes place to address risks of one line of development reaching a 'dead end'. This approach offers lower cost re-design of the final product but it is an expensive and time consuming approach. This is the more common approach in aviation, it provides greater chance of success at the test flight stage where the life of a test pilot is at risk.

The component testing approach is bottom up, each part and the material it is made of is specified and tested, then the sub assemblies are tested and re-designed if need be. Parallel development of alternative designs takes place to address risks of one line of development reaching a 'dead end'. This approach offers lower cost re-design of the final product but it is an expensive and time consuming approach. This is the more common approach in aviation, it provides greater chance of success at the test flight stage where the life of a test pilot is at risk.

The component testing philosophy arose from the German rocket team (under Werner von Braun) and also the flight test engineers who were civil organisations. These two groups built systems that flew with a human payload and so reliability was of paramount importance.

Because of the budget constraints placed on NASA by Congress a senior level decision was made to adopt the lower cost 'all-up' approach to testing. Note that the value system of the engineers who had developed this approach did not include concern for safety to the same extent as the latter group who built manned vehicles. What this top level decision meant for the engineers on the project was that each engineer in the organisation had to make judgmental decisions about the suitability of components, without the freedom to test the component in the traditional engineering fashion. This

10 Pinkus et al p150 - 153
was an organisation constraint placed on the freedom of each engineer to perform their job.

2.2 CONCLUSIONS ON TECHNICAL DECISION MAKING

What this section tries to put across is that whilst a technical profession may have a ‘way’ of doing things. The organisation employing the professional staff may impose constraints on the freedom to act by those professionals.

3 PROFESSIONS – A GUIDE TO CODES OF ETHICS

A profession is an occupation requiring advanced education, training and involving intellectual skills. Examples are doctors, lawyers and engineers. Professionals provide a service to the population as a whole but the average recipient of that service has little opportunity to judge the qualifications of the professional. Users of professional services therefore rely on professional membership as a way of determining qualification for the work to be done.

The question of trust arises here. There are two types of trust questions that are relevant, “Can you do the job?” and ‘Will you take care of my interests in a predictable way?”. The field of trust is a new development in project management research.

All recognised professions have five attributes, these are

1. A unique body of knowledge
2. Standards of entry
3. A code of ethics
4. Service orientation to the profession
5. A sanctioning organisation

Ethics is not however one ‘compartment’ within this framework that can be safely ignored most of the time. The intention of this section is to focus on that compartment; however the purpose of this reader is to show that Ethics is a pervasive factor throughout the entirety of a profession. This theme is elaborated on below.

3.1 PROJECT MANAGEMENT PROFESSION

This section examines each of the five attributes of a profession with reference to PMI, the American professional organisation. There are several other organisations that also promote professionalism in this field however PMI is globally the most widespread and accessible.

11 Adams 14:3

12 Hartman p227
As an aside in this discussion, it is noteworthy that the ethics development team have recommended to the board of PMI that the standard be revisited every five years ‘for consistency and to adjust to new trends’. Presumably values change with time.

The body of knowledge provides users of the profession with an outline of what they can expect from the professional by way of service. From an ethical viewpoint the professional is a knowledge expert in that profession, they are relied upon in this capacity. To do this the professional must be competent in the knowledge areas of the profession.

Standards of entry provide a route for members of the public to work towards admission to the profession. In the case of PMI this standard is demonstrated through the successful completion of the Project Management Professional (PMP) exam. It should be noted by aspirants that this is not a test of knowledge about the content of the body of knowledge text, ‘A Guide to the Project Management Body of Knowledge’, but a test of the knowledge areas outlined within that text.

The PMI code of ethics (October 2006 version) is reproduced in the appendix of this reader. Relating to this paper is the observation that the code is based on a set of values and these four values: Responsibility, Respect, Fairness, and Honesty are the four major headings of the code.

PMI encourages a service orientation through its requirement for ongoing professional development. To retain the PMP status holders have to submit evidence of professional development, this can take the form of attendance or delivery of training, writing of articles, or devoting voluntary service to the community, and particularly to promoting the profession to the public.

The purpose of ethical standards is to make explicit appropriate behaviour and provide a basis for self policing of unethical behaviour. This activity is performed through the use of sanction by a professional body. PMI have such a mechanism for reporting and conducting hearings on unethical conduct.

3.2 A CODE OF ETHICS ROLE

Hopefully the above explanation of its role, with the abbreviated example from PMI in the appendix gives readers some idea of how important the code of ethics of a profession is.

Codes present the moral responsibilities of professionals and as such stress not only the responsibilities of its members but the freedom to exercise those responsibilities. 13 Eight roles are fulfilled by a code of ethics

1. Serving and protecting the public
2. Providing guidance
3. Offering inspiration

13 Martin & Schinzinger p44
4. Establishing shared standards

5. Supporting responsible professionals

6. Contributing to education

7. Deterring wrongdoing

8. Strengthening a professions image

Codes are not a substitute for individual responsibility, but they are a framework for dialog about moral issues and cast a light on the dilemmas confronting engineers and project managers.\(^{14}\) The code of ethics of a profession is derived from ordinary morality relating to how to serve the public good.\(^{15}\)

3.3 KEY PRINCIPLES IN ETHICS CODES

This section relates particularly to engineering and technology project managers. There are three key elements summarised in the statement 'professionals are competent, responsible, and strive to avoid potential for harm and opt for doing good.'\(^{16}\)

Competency means having enough knowledge about the subject and the task and technology to perform and also know what areas are not known or understood. So competency includes knowledge and acknowledgement of one's limits. An incompetent may still 'do' the same things but without being fully informed of what they should be doing. (Such a case of incompetence may be intentional or unintentional)

Professional responsibility is to communicate what one knows, not to communicate is to is to abdicate one's proper and unique role. This means that the professional has to take part in the organisation decision making process and by so doing, through the use of expert power, become responsible for those decisions.

The final element, to do no harm, relates to safety and more recently the natural environment. This places the onus on the professional to identify and articulate the risks involved in and arising from what is being undertaken. The communication of that knowledge should take place in the decision making process. To remain silent about risks or worrisome data relating to risks is an abdication of one's role as a knowledge expert inside an organisation.

3.4 OBLIGATIONS AND ORGANISATIONS

The question now arises for professionals, to whom do they owe their loyalties, their employer or the profession that defines their role and standing in society. Loyalty can mean two things, 'Agency' loyalty and 'attitude' loyalty.\(^{17}\) Agency loyalty is acting to fulfil

\(^{14}\) Martin & Schinzinger p47 & 51

\(^{15}\) Martin & Schinzinger p50

\(^{16}\) Pinkus et al p33 - 42

\(^{17}\) Martin & Schinzinger p 150
ones contractual duties to an employer. Attitude loyalty is defined by emotions, attitude and ones sense of personal identity.

Where a professional code of ethics, asserts that the members must place priority on the interests of their employer or client, is this the overriding 'value'. In the case of engineers there is an overriding obligation to 'hold paramount the safety, health, and welfare of the public', this probably applies to other technical professionals as well.

The subject of rights is a large one. Here two will be highlighted in the context of the professional at work. The first right is to the provision by ones employer of the freedom to perform ones duties as one sees fit. This has two aspects: freedom from interference and second the provision of suitable facilities and equipment.

The second right is the right of conscientious refusal, that is the right to refuse to engage in unethical behaviour. Here there is scope for conflict between this right and the obligations to ones employer. Such situations can arise where there is no agreement that a project or procedure is unethical. It is universally agreed that in cases where payment of bribes for instance, or falsifying documents, is concerned one has a right to refuse. But some situations, involving safety or the environment for example, are less clear cut. In these latter cases some degree of judgment is needed.

3.5 CONCLUSION ON CODES OF ETHICS

This section tried to demonstrate that the code of ethics is derived from an underlying value system. The code itself in turn underpins the entire profession. The main role of the code is to assure the public that the profession will place the public interest ahead of other considerations.

4 ETHICS AND MODERN ORGANISATIONS

The working decisions made by project and technical professionals are mainly within the context of organisations of which they are a part. As a result the goals and the internal environment of the organisation impact directly on decision making.

As Simon makes clear "The individual can be rational in term of the organisations goals only to the extent that he is able to pursue a certain course of action, and is correctly informed about the conditions surrounding his actions. Within the boundaries laid down by these factors his choices are rational, - goal-oriented".

Simon previously states "The task of administration is to so design this environment that the individual will approach as close as practicable to rationality (Judged in terms of the organisation's goals) in his decisions".

18 Martin & Schinzinger p 154 to 171 has a more complete coverage of different types of rights.

19 Simon p323

20 Simon p 322
Simon also makes the important point that decisions made in modern organisations are rarely attributable to one person. The process can in fact be quite complex. Consider a large technical system. The needs are specified by the senior representatives of the user community. The solution framework is then sketched out by an architect, (A generalist of some sort), once this is agreed to any number of specialists apply their minds to more detailed design of each component. These then have to be reviewed and integrated into the whole. The final design is agreed with the user group, budgets are set and work begins, along with a whole new set of technical decisions.

The point being made here is that each professional applies his or her mind to the problems that they are an expert about. Their solution space is constrained by the opinions of other experts of different areas that have a bearing on their own domain. The decisions become sub-optimal trade-off choices, what is most practical, or flexible, or meets the situation as understood by the decision maker.

As mentioned in section 3.3 above, each professional has a duty to ensure they have communicated to other professionals what they know to be pertinent. This duty can only be completely performed if the organisation and its processes are designed to allow it. The burden of ethical decision making is therefore in part contingent on the organisation and its design.

Returning to Pinkus et al 21, the organisation has to ensure that the collective body of knowledge of all its professionals contain the requisite knowledge to undertake the work of the organisation. The organisation has to be competent in all the requisite knowledge areas.

On top of competence the organisation must also exhibit responsibility. 22 That is the organisation must listen to and consider reported concerns. Finally there is the matter of doing no harm. 23 Individual technologists cannot comprehend the totality of risks inherent in a modern technical system. Only an organisational level analysis of risk can do this. From this viewpoint it is the organisation that has an obligation to assess the risks and take action where appropriate to reduce them. By contrast an un-ethical organisation fails to assess risks or ignores the potential for harm.

4.1 CONCLUSION ON ORGANISATION ETHICS

In the same way that the professional has a duty to be competent, responsible and do no harm, organisations also have to meet these criteria to be ethical. In addition the organisation has to ensure that professional staff within its ranks is able to make appropriate decisions with access to appropriate information.

21 Pinkus et al p36
22 Pinkus et al p 38
23 Pinkus et al p 40
5 ETHICS - CASE STUDIES

The cases below are provided for discussion and support for the material above. The Space Shuttle example is taken from a book examining the organisation dynamics around the launch decision by Diane Vaughan. It is intended to show how subsumed in the culture of an organisation, an error of judgment can arise due to inadequate information. The entire tragedy of that launch arose despite the existence of suitable data supporting the arguments to delay the launch due to cold weather.

The DC-10 case is mentioned in Martin and Schinzinger, but elaborated on in Pinkus et al. The latter show how complex a situation can become when technical staff raises ethical issues. In this case not only was the individual in a difficult situation, but also the organisation employing him.

The material for the Shell Brent Spar case is drawn from the Shell web site. They provide access to the chronology of what they did as well as the main evaluation reports that led them to the final choice of sinking the structure in the deep ocean. It is an interesting case because it explains how a careful and rational (ethical) decision being taken by an organisation was overturned due to different (arguably less rational) views of the press, public and a powerful NGO.

5.1 SAFETY AND THE SPACE SHUTTLE CHALLENGER

NASA had a culture of using quantifiable supporting evidence when making decisions. Observational data, backed by an intuitive argument, were behind all engineering analysis. But subjective, intuitive arguments required lab work and tests before they were considered admissible evidence in Flight Readiness Reviews. Otherwise they remained untested hypotheses that were unacceptable in NASA's science-based, rule-bound pre-launch Flight Readiness Review.

The arguments against launching the fatal Challenger flight were all dependent on subjective views. These made them a weak signal in the minds of the decision makers. On the morning of the launch there was a meeting to assess the situation regarding ice on the launch vehicle and structure. "Of the three reports given to NASA, two included quantitative data about the distance the ice would fall and re-bound and the probability of resultant damage to the vehicle. These statements were accompanied by recommendations to accept the risks and proceed with the launch".

The third report lacked quantitative data. "They discussed the possibilities, stating that the evidence was 'inconclusive', that the condition was an unknown, and that they were unable to predict and therefore unable to assure that it was safe to fly". The final decision to launch was based on the two quantitative arguments presented.

5.2 SAFETY THE DC-10

The McDonnell Douglas DC-10 was an early wide body jet airliner. The fuselage design was dictated by McDonnell Douglas was subcontracted to a company called

24 Vaughn P 354
Convair for development. In 1968 defects in the design of these early wide body jets were made known. McDonnell Douglas lobbied with the authorities to ensure their design would be certified as airworthy.

There were some indications of problems after that including one near disaster. These were disregarded by McDonnell Douglas, the FAA and the press at the time.

In 1972 one of the project managers at Convair raised the issue of the safety of the design after a test example failed. He wrote a memo stating that air crashes were inevitable in the life of the aircraft if certain modifications were not put in place. Convair management did not dispute what the project manager had to say but did not act on what he had said.

By the time of the memo McDonnell Douglas was shifting the burden of financial risk for redesign onto Convair, the sub-contractor. Convair management therefore faced a choice of building the fuselage according to the design of their customer, or losing the contract, alternatively re-designing and carrying the costs of the re-design work.

5.3 SHELL AND THE ENVIRONMENT

Brent Spar is a North Sea oil storage system that was operated by Shell from 1976 to 1991. At the end of its useful life the company commissioned consulting firms to identify the most responsible method of decommissioning and disposing of the structure. After several studies which considered safety and environmental issues as well as cost, a choice of dismantling the structure near shore or sinking it in deep water emerged as most feasible of the options. Of the two deep-sea sinking was considered six times safer from an environmental and safety viewpoint.

The pressure group Greenpeace took the opposite view and argued that nothing should be left in the sea. The British Government and the Shell took a position based on the argument; Brent Spar was large, though not extraordinarily so in maritime terms; it contained some residual oil, but not in the quantities estimated by Greenpeace; an environmental effect of this residual was of course possible, but the residues would remain inside the Spar at great depth. On land dismantling was possible but according to the studies more hazardous to man and nature. Shell and the authorities viewed this as a rational argument that was perfectly sound.

Greenpeace, on the other hand, set out from a different premise, viz., ‘the sea is not a dumping ground’. This was an argument that appealed to the public some of whom were outraged. They accepted the claims made by Greenpeace that Shell underestimated the quantity of oil residue, that the Spar contained radioactive material and that its structure was weak and could break up when it sank. It did not matter whether these statements, repeated in front page articles, were true or not.

Some days before the planned dumping and after Greenpeace had managed to place activists aboard Brent Spar; Shell decided to give in and eventually took the more hazardous route of onshore dismantling. Greenpeace may have been overreacting due to the success of their publicity, they felt obliged to apologise to Shell for the presentation of the incorrect facts on the quantity of oil inside the Brent Spar.
6 APPENDIX

6.1 DEFINITIONS

Ethics	The science of morals, that branch of philosophy which is concerned with human character and conduct. A 'generic term for several ways of examining moral life' that is, critical reflection on what one does and why one does it. Some approaches to ethics are descriptive and others are normative.
Morality	Social conventions about right and wrong human conduct that are so widely shared they form a stable (although usually incomplete) communal consensus.
Normative Ethics	(General) "The field of inquiry that attempts to answer the question, 'which action guides' are worthy of moral acceptance and for what reasons. Types of action guides are theories, principles, rules and maxims. They are used to assess the morality of actions. (Applied) Refers to the use of ethical theory and methods of analysis to examine moral problems in the professions. Most professions articulate a code of ethics to specify role norms or obligations that professions attempt to enforce. Sometimes etiquette and responsibilities are spelled out. Theory is not actually applied but rather is involved to help develop specific action guides.

6.2 REFERENCES

6.3 LEARNING OUTCOMES

1. Understanding that Ethics are based on communal values that we learn from the group we are part of, and that they differ between groups.

2. Understanding that values act as a form of control on decisions and behaviour.

3. Group values place the 'good of others' above self interest

4. Decisions made in relation to technical matters involve two components, a 'factual' component that can be tested to see if it is true, and an ethical component that is founded on values.

5. Decision making freedom is constrained by the organisation

6. Codes of ethics are derived from values

7. Understand that a code of ethics underpins public confidence in professions

8. Understand how ethics apply to organisations, in terms of the ethical organisation and organisation design.

6.4 OUTLINE OF THE PMI CODE OF ETHICS

The main points of the most recently published version of the code are presented here

1. Vision and Applicability

11. Vision and Purpose

12. Persons to whom the code applies

12.1. All PMI Members

12.2. Non members

12.2.1. who hold PMI certification

12.2.2. applicants for PMI certification

12.2.3. non-members who serve PMI in a voluntary capacity

13. Structure of the code

14. Values that support this code (Responsibility, respect, fairness and honesty)
1.5. Aspirational and Mandatory Conduct

2. Responsibility

2.1. Description of Responsibility (Responsibility is our duty to take ownership for decisions we make or fail to make, the actions we take or fail to take, and the consequences that result)

2.2. Responsibility: Aspirational Standards

2.2.1. We make decisions and take actions based on the best interests of society, public safety, and the environment

2.2.2. We accept only those assignments that are consistent with our background, experience, skills, and qualifications

2.2.3. We fulfil the commitments that we undertake - we do what we say we will do

2.2.4. When we make errors or omissions, we take ownership and make corrections promptly. When we discover errors or omissions caused by others, we communicate them to the appropriate body as soon as they are discovered. We accept accountability for any issues resulting from our errors or omissions and any resulting consequences

2.2.5. We protect proprietary or confidential information that has been entrusted to us

2.2.6. We uphold this code and hold each other accountable to it

2.3. Responsibility: Mandatory Standards

2.3.1. We inform ourselves and uphold the policies, rules, regulations and laws that govern our work, professional, and volunteer activities

2.3.2. We report unethical or illegal conduct to appropriate management and, if necessary, to those affected by the conduct

2.3.3. We bring violations of this Code to the attention of the appropriate body for resolution

2.3.4. We only file ethics complaints when they are substantiated by facts

2.3.5. We pursue disciplinary action against an individual who retaliates against a person raising ethics concerns

3. Respect

3.1. Description of Respect (Respect is our duty to show a high regard for ourselves, others, and the resources entrusted to us. Resources entrusted to us may include people, money, reputation, the safety of others, and natural or environmental resources.

3.2. Respect: Aspirational Standards

3.2.1. We inform ourselves about the norms and customs of others and avoid engaging in behaviours they might consider disrespectful
3.2.2. We listen to others point of view, seeking to understand them

3.2.3. We approach directly those persons with whom we have a conflict or disagreement

3.2.4. We conduct ourselves in a professional manner, even when it is not reciprocated

3.3. Respect: Mandatory Standards

3.3.1. We negotiate in good faith

3.3.2. We do not exercise the power of our expertise or position to influence the decisions or actions of others in order to benefit personally at their expense

3.3.3. We do not act in an abusive manner towards others

3.3.4. We respect the property rights of others

4. Fairness

4.1. Description of Fairness (Fairness is our duty to make decisions and act impartially and objectively. Our conduct must be free from competing self-interest, prejudice, and favouritism

4.2. Fairness: Aspirational Standards

4.2.1. We demonstrate transparency on our decision-making process

4.2.2. We constantly re-examine our impartiality and objectivity, taking corrective action as appropriate

4.2.3. We provide equal access to information to those who are authorised to have that information

4.2.4. We make opportunities equally available to qualified candidates

4.3. Fairness: Mandatory Standards

4.3.1. We proactively and fully disclose any real or potential conflicts of interest to the appropriate stakeholders

4.3.2. When we realise that we have a real or potential conflict of interest, we refrain from engaging in the decision making process or otherwise attempting to influence outcomes, unless or until; we have made full disclosure to the affected stakeholders; we have an approved mitigation plan; and we have obtained the consent of the stakeholders to proceed

4.3.3. We do not hire or fire, reward or punish, or award or deny contracts based on personal considerations, including but not limited to, favouritism, nepotism, or bribery

4.3.4. We do not discriminate against others based on, but not limited to, gender, race, age, religion, disability, nationality, or sexual orientation

4.3.5. We apply the rules of the organisation without favouritism or prejudice
5. Honesty

5.1. Description of Honesty (Honesty is our duty to understand the truth and act in a truthful manner both in our communications and in our conduct)

5.2. Honesty: Aspirational Standard

5.2.1. We earnestly seek to understand the truth

5.2.2. We are truthful in our communications and in our conduct

5.2.3. We provide accurate information in a timely manner

5.2.4. We make commitments and promises, implied or explicit, in good faith

5.2.5. We strive to create an environment in which others feel safe to tell the truth

5.3. Honesty: Mandatory Standards

5.3.1. We do not engage in or condone behaviour that is designed to deceive others, including but not limited to, making misleading or false statements, stating half-truths, providing information out of context or withholding information that, if known, would render our statements as misleading or incomplete

5.3.2. We do not engage in dishonest behaviour with the intention of personal gain or at the expense of another